

TomoStream

Content

	About

	Install directions

	Usage

	tomoStreamApp EPICS application

	API reference

	Credits

About

tomostream is Python module for supporting streaming analysis of tomographic data where all pre-processing and reconstruction procedures are performed in real time while images are collected and the rotary stage is moving. tomostream provides this main functionality:

	
	Streaming reconstruction of 3 X-Y-Z ortho-slices through the sample
	
The streaming reconstruction engine generates 3 selectable X-Y-Z orthogonal planes and makes them available as an EPICS PV viewable in ImageJ using the EPICS_NTNDA_Viewer [https://cars9.uchicago.edu/software/epics/areaDetectorViewers.html] plug-in. Projection, dark and flat images used for the reconstruction are taken in real time from a set of PV access variables (pvapy) and stored in a synchronized queue. On each reconstruction call new data are taken from the queue, copied to a circular GPU buffer containing projections for a 180 degrees interval, and then reconstructed.

All tomostream functionalies can be controlled from the tomoStream user interface:

[image: _images/tomoStream.png]
tomostream relies on tomoscan_stream_2bm [https://tomoscan.readthedocs.io/en/latest/api/tomoscan_stream_2bm.html] (part of tomoScan [https://tomoscan.readthedocs.io]) for:

	Tomography instrument control

	Projection, dark and flat image broadcast as PV access variables

	On-demand retake of dark-flat field images

	On-demand data capturing with saving in a standard hdf5 DXfile [https://dxfile.readthedocs.io/en/latest/source/xraytomo.html] file

	Set a number of projectons (“Pre count”) collected before a triggered data capturing event to be also saved in the same hdf5 file

All tomoscan_stream_2bm [https://tomoscan.readthedocs.io/en/latest/api/tomoscan_stream_2bm.html] functionalies supporting tomostream can be controlled from the tomoScanStream user interface marked in yellow:

[image: _images/tomoScanStream.png]
The output of tomostream is a live reconstruction diplaying in ImageJ using the EPICS_NTNDA_Viewer [https://cars9.uchicago.edu/software/epics/areaDetectorViewers.html] plug-in:

[image: _images/tomoStreamRecon.png]
While the sample is rotating is possible to optimize instrument (alignment, focus, sample to detector distance etc.) and beamline (energy etc.) conditions and monitor the effect live on the 3 orthogonal slices. It is also possible to automatically trigger data capturing based on events occurring in the sample and its environment as a result of segmentation or machine learning.

Install directions

The computer performing the tomographic reconstruction must have CUDA/GPU installed. tomostream consists of two modules
TomoScanApp and tomostream tools.

TomoScanApp

Provides all the EPICS PVs needed by tomostream. To install TomoScanApp follow these steps:

Build a minimal synApps

To build a minimal synApp:

$ mkdir ~/epics
$ cd epics

	Download in ~/epics assemble_synApps [https://github.com/EPICS-synApps/support/blob/master/assemble_synApps.sh].sh

	
	Edit the assemble_synApps.sh script as follows:
	
	Set FULL_CLONE=True

	Set EPICS_BASE to point to the location of EPICS base. This could be on APSshare (the default), or a local version you built.

	For tomostream you only need BUSY and AUTOSAVE. You can comment out all of the other modules (ALLENBRADLEY, ALIVE, etc.)

	Run:

$ assemble_synApps.sh

	This will create a synApps/ directory:

$ cd synApps/support/

	Edit busy-R1-7-2/configure/RELEASE to comment out this line:

ASYN=$(SUPPORT)/asyn-4-32).

	Clone the tomostream module into synApps/support:

$ git clone https://github.com/tomography/tomostream.git

	Edit tomostream/configure/RELEASE to comment out this line:

ASYN=$(SUPPORT)/asyn-4-38

	Edit tomostream/tomoStreamApp/src/Makefile to comment out this line:

tomoStreamApp_LIBS += asyn

	Edit configure/RELEASE add this line to the end:

TOMOSTREAM=$(SUPPORT)/tomostream

	Edit Makefile add this line to the end of the MODULE_LIST:

MODULE_LIST += TOMOSTREAM

	Run the following commands:

$ make release
$ make -sj

Testing the installation

	
	Edit /epics/synApps/support/tomostream/configure
	
	Set EPICS_BASE to point to the location of EPICS base:

	EPICS_BASE=/APSshare/epics/base-3.15.6

	Start the epics ioc and associated medm screen with:

$ cd ~/epics/synApps/support/tomostream/iocBoot/iocTomoStream
$ start_IOC
$ start_medm

tomostream python tools

$ cd ~/epics/synApps/support/tomostream/
$ python setup.py install

Testing the installation

$ cd ~/epics/synApps/support/tomostream/iocBoot/iocTomoStream
$ python -i start_tomostream.py

Usage

Using the tomoStream

Pre-requisites

Before running tomostream you need to install and run tomoscan_stream_2bm [https://tomoscan.readthedocs.io/en/latest/api/tomoscan_stream_2bm.html] (see tomoScan [https://tomoscan.readthedocs.io] for details) to provide:

	Tomography instrument control

	Projection, dark and flat image broadcast as PV access variables

	On-demand retake of dark-flat field images

	On-demand data capturing

Once tomoScan [https://tomoscan.readthedocs.io] is installed on the computer connected to the detector:

	start area detector, e.g.:

user2bmb@lyra$ 2bmbPG1 start

	start tomoScan IOC, e.g.:

user2bmb@lyra$ cd /local/user2bmb/epics/synApps/support/tomoscan/iocBoot/iocTomoScan_2BM/
user2bmb@lyra$./start_IOC

	start the instance of tomoscan.py supporting tomostream tasks at your beamline, e.g.:

user2bmb@lyra$ cd /local/user2bmb/epics/synApps/support/tomoscan/iocBoot/iocTomoScan_2BM/
user2bmb@lyra$ python -i start_tomoscan_stream.py

	start tomoScan user interface, e.g.:

user2bmb@lyra$ cd /local/tomo/epics/synApps/support/tomostream/iocBoot/iocTomoStream/
user2bmb@lyra$./start_medm

[image: _images/tomoScanStream.png]
All tomoscan_stream_2bm [https://tomoscan.readthedocs.io/en/latest/api/tomoscan_stream_2bm.html] functionalies supporting tomostream can be controlled from the tomoScanStream user interface marked in yellow.

Run tomoStream

	start tomoStream IOC, e.g.:

tomo@handyn$ cd /local/tomo/epics/synApps/support/tomostream/iocBoot/iocTomoStream/
tomo@handyn$./start_IOC

	start the tomostream.py supporting streaming reconstruction, e.g.:

tomo@handyn$ cd /local/tomo/epics/synApps/support/tomostream/iocBoot/iocTomoStream/
tomo@handyn$ python -i start_tomostream.py

	start tomoStream user interface, e.g.:

tomo@handyn$ cd /local/tomo/epics/synApps/support/tomostream/iocBoot/iocTomoStream/
tomo@handyn$./start_medm

[image: _images/tomoStream.png]
Open the EPICS PV names configuration screen:

[image: _images/tomoStreamEPICS_PVs.png]
to set the TomoScan prefix and the PVAccess names provided by tomoScan [https://tomoscan.readthedocs.io] for projection (Image), dark and flat image broadcast. Here also set the Recon PVAccess name where the streaming reconstruction will served. Use the Recon PVAccess name to view the live reconstriction using the EPICS_NTNDA_Viewer [https://cars9.uchicago.edu/software/epics/areaDetectorViewers.html] ImageJ plug-in:

[image: _images/EPICS_NTNDA_Viewer.png]
Finally press “Start Scan” in the tomoScan control screen and reconstructions will diplay live in ImageJ:

[image: _images/tomoStreamRecon.png]

tomoStreamApp EPICS application

tomostream includes a complete example EPICS application, including:

	A database file and corresponding autosave request file that contain only the PVs required by the tomoscan.py base class.

	Database files and corresponding autosave request files that contain PVs used by the derived classes.

	An example IOC application that can be used to run the above databases.
The databases are loaded in the IOC with the example substitutions file,
tomoStream.substitutions.

Base class files

The following tables list all of the records in the tomoScan.template file.
These records are used by the tomoscan base class and so are required.

tomoStream.template

This is the database file that contains only the PVs required by the tomoscan.py base class
tomoStream.template.

tomoStream PV Prefixes

	Record name

	Record type

	Description

	(P)(R)TomoScanPVPrefix

	stringout

	Contains the prefix for the tomoscan controlling the data collection, e.g. 2bma:TomoScan

tomoStream PVA Names

	Record name

	Record type

	Description

	(P)(R)ImagePVAPName

	stringout

	Contains the name of the TomoScan PV storing the PV prefix of the images streamed by the detector

	(P)(R)DarkPVAName

	stringout

	Contains the name of the TomoScan PVA where the dark images are stored

	(P)(R)FlatPVAName

	stringout

	Contains the name of the TomoScan PVA where the flat images are stored

	(P)(R)ThetaPVAName

	stringout

	Contains the name of the TomoScan PVA where the rotation angle positions are stored

	(P)(R)ReconPVAName

	stringout

	Contains the name of the TomoStream PVA where the the selected 3 orthogonal slices are stored

Streaming analysis control

	Record name

	Record type

	Description

	(P)(R)CameraPVPrefix

	stringout

	Contains the prefix for the camera, e.g. 13BMDPG1:

	(P)(R)Status

	bo

	Flag storing the streaming status. Choices are ‘Off’ and ‘On’. When ‘On’ the streaming reconstruction is enabled

	(P)(R)BufferSize

	longout

	Stream buffer size

	(P)(R)Center

	ao

	Rotation center for streaming reconstruction

	(P)(R)FilterType

	mbbo

	Filter type for streaming reconstruction, ‘Parzen’, ‘Shepp-logan’, ‘Ramp’, ‘Butterworth’

	(P)(R)OrthoX

	longout

	Ortho slice in the X direction for streaming reconstruction

	(P)(R)OrthoY

	longout

	Ortho slice in the Y direction for streaming reconstruction

	(P)(R)OrthoZ

	longout

	Ortho slice in the Z direction for streaming reconstruction

Stream status via Channel Access

	Record name

	Record type

	Description

	(P)(R)ReconStatus

	waveform

	This record will be updated with the stream reconstruction status while scanning.

	(P)(R)ReconTime

	ao

	This record will update with the time to reconstruct the selected 3 orthogonal slices.

	(P)(R)ServerRunning

	bi

	This record will be Running if the Python server is running and Stopped if not.
It is controlled by a watchdog timer, and will change from Running to Stopped
within 5 seconds if the Python server exits.

tomoStream_settings.req

This is the autosave request file for tomoStream.template
tomoStream_settings.req.

It has the same usage and type of content as tomoStream_settings.req described above, except that it contains the PVs for the derived class TomoStream.

medm files

To start the tomostream medm screen:

$ cd /local/USERNAME/epics/synApps/support/tomostream/iocBoot/iocTomoStream
$ start_medm

where USERNAME is the username under which the tomoStreamApp is installed.

tomoStream.adl

The following is the MEDM screen tomoStream.adl.
This screen contains the PVs to control tomoStream.

[image: _images/tomoStream.png]

tomoStreamEPICS_PVs.adl

The EPICS PV names screen is below:

[image: _images/tomoStreamEPICS_PVs.png]

API reference

tomostream Modules:

	tomostream.kernels

	tomostream.tomostream

	tomostream.solver

Credits

Citations

	A1

	author. title. http://aps.anl.gov. Accessed: 2016-03-12.

References

	B1

	author. title. http://aps.anl.gov. Accessed: 2016-03-12.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tomostream	

 	
 	
 tomostream.kernels	

 	
 	
 tomostream.solver	

Index

 B
 | D
 | F
 | M
 | O
 | R
 | S
 | T

B

 	
 	backprojection() (tomostream.solver.Solver method)

D

 	
 	darkflat_correction() (tomostream.solver.Solver method)

F

 	
 	fbp_filter() (tomostream.solver.Solver method)

 	
 	free() (tomostream.solver.Solver method)

M

 	
 	minus_log() (tomostream.solver.Solver method)

 	
 module

 	tomostream

 	tomostream.kernels

 	tomostream.solver

O

 	
 	orthox() (in module tomostream.kernels)

 	
 	orthoy() (in module tomostream.kernels)

 	orthoz() (in module tomostream.kernels)

R

 	
 	recon() (tomostream.solver.Solver method)

 	
 	recon_optimized() (tomostream.solver.Solver method)

 	remove_outliers() (tomostream.solver.Solver method)

S

 	
 	set_dark() (tomostream.solver.Solver method)

 	
 	set_flat() (tomostream.solver.Solver method)

 	Solver (class in tomostream.solver)

T

 	
 	
 tomostream

 	module

 	
 tomostream.kernels

 	module

 	
 	
 tomostream.solver

 	module

tomoStream.substitutions

tomoStream.template

Database for EPICS PVS for tomography data streaming software
This database contains all of the PVs used by the tomostream base class.

########################
tomoStream PV Prefixes
########################

record(stringout, "(P)(R)TomoScanPVPrefix")
{
 field(VAL, "$(TOMO_SCAN)")
}

#######################
tomoStream PVA names
#######################

record(stringout, "(P)(R)ImagePVAPName")
{
 field(VAL, "$(IMAGE_P)")
}

record(stringout, "(P)(R)DarkPVAName")
{
 field(VAL, "$(DARK_PVA)")
}

record(stringout, "(P)(R)FlatPVAName")
{
 field(VAL, "$(FLAT_PVA)")
}

record(stringout, "(P)(R)ThetaPVAName")
{
 field(VAL, "$(THETA_PVA)")
}

record(stringout, "(P)(R)ReconPVAName")
{
 field(VAL, "$(RECON_PVA)")
}

############################
Streaming analysis control
############################

record(stringout, "(P)(R)BufferSize")
{
}

record(ao, "(P)(R)Center")
{
 field(PREC, "3")
}

record(ao,"(P)(R)CenterTweak") {
 field(VAL, "3")
 field(PREC,"3")
}

record(calcout,"(P)(R)CenterTweakUp") {
 field(INPA,"(P)(R)CenterTweak NPP NMS")
 field(INPB,"(P)(R)Center NPP NMS")
 field(CALC,"B+A")
 field(OUT, "(P)(R)Center PP NMS")
}

record(calcout,"(P)(R)CenterTweakDown") {
 field(INPA,"(P)(R)CenterTweak NPP NMS")
 field(INPB,"(P)(R)Center NPP NMS")
 field(CALC,"B-A")
 field(OUT, "(P)(R)Center PP NMS")
}

record(mbbo, "(P)(R)FilterType")
{
 field(ZRVL, "0")
 field(ZRST, "Parzen")
 field(ONVL, "1")
 field(ONST, "Shepp-logan")
 field(TWVL, "2")
 field(TWST, "Ramp")
 field(THVL, "3")
 field(THST, "Butterworth")
}

record(mbbo, "(P)(R)Dezinger")
{
 field(ZRVL, "0")
 field(ZRST, "None")
 field(ONVL, "2")
 field(ONST, "Radius 2")
 field(TWVL, "3")
 field(TWST, "Radius 3")
 field(THVL, "4")
 field(THST, "Radius 4")
}

record(mbbo, "(P)(R)RingRemoval")
{
 field(ZRVL, "0")
 field(ZRST, "None")
 field(ONVL, "1")
 field(ONST, "fw")
}

record(longout, "(P)(R)OrthoX")
{
 field(LOPR, "0")
 field(HOPR, "2448")
}

record(longout, "(P)(R)OrthoY")
{
 field(LOPR, "0")
 field(HOPR, "2448")
}

record(longout, "(P)(R)OrthoZ")
{
 field(LOPR, "0")
 field(HOPR, "2448")
}

record(ao, "(P)(R)RotX")
{
 field(PREC, "1")
 field(LOPR, "-180")
 field(HOPR, "180")
}

record(ao, "(P)(R)RotY")
{
 field(PREC, "1")
 field(LOPR, "-180")
 field(HOPR, "180")
}

record(ao, "(P)(R)RotZ")
{
 field(PREC, "1")
 field(LOPR, "-180")
 field(HOPR, "180")
}

##################################
Stream status via Channel Access
##################################

record(waveform,"(P)(R)ReconStatus")
{
 field(FTVL, "UCHAR")
 field(NELM, "256")
}

record(ao, "(P)(R)ReconTime")
{
 field(PREC, "5")
}

record(calcout, "(P)(R)Watchdog")
{
 field(SCAN, "1 second")
 field(INPA, "(P)(R)Watchdog.VAL NPP")
 field(CALC, "A-1")
 field(OCAL, "A>0?1:0")
 field(OOPT, "On Change")
 field(DOPT, "Use OCAL")
 field(OUT, "(P)(R)ServerRunning PP")
}

record(bi, "(P)(R)ServerRunning")
{
 field(ZNAM, "Stopped")
 field(ZSV, "MAJOR")
 field(ONAM, "Running")
 field(OSV, "NO_ALARM")
}

###################################
Stream control via Channel Access
###################################

record(busy,"(P)(R)StartRecon")
{
 field(ZNAM,"Done")
 field(ZSV, "NO_ALARM")
 field(ONAM,"Acquire")
 field(OSV, "MINOR")
 field(VAL, "0")
}

record(bo,"(P)(R)AbortRecon")
{
 field(ZNAM,"No")
 field(ONAM,"Yes")
}

##
Lens change synchronization with orthoslices
##

record(bo,"(P)(R)LensChangeSync")
{
 field(ZNAM,"No")
 field(ONAM,"Yes")
}

tomoStream_settings.req

This file is used by autosave to determine what PVs to save
It is also used by tomoStream to determine what PVs to create

This file contains all of the PVs used by the tomostream base class.

Lines that begin with #controlPV are not saved by autosave,
but they are used by tomostream.
These PVs are not saved in the tomostream configuration file.

########################
tomoStream PV Prefixes
########################
(P)(R)TomoScanPVPrefix

######################
tomoStream PVA names
######################
(P)(R)ImagePVAPName
(P)(R)DarkPVAName
(P)(R)FlatPVAName
(P)(R)ThetaPVAName
(P)(R)ReconPVAName

############################
Streaming analysis control
############################
(P)(R)BufferSize
(P)(R)Center
(P)(R)CenterTweak
(P)(R)CenterTweakUp
(P)(R)CenterTweakDown
(P)(R)Dezinger
(P)(R)RingRemoval
(P)(R)FilterType
(P)(R)OrthoX
(P)(R)OrthoY
(P)(R)OrthoZ
(P)(R)RotX
(P)(R)RotY
(P)(R)RotZ

##################################
Stream status via Channel Access
##################################
#controlPV (P)(R)ReconTime
#controlPV (P)(R)ReconStatus
#controlPV (P)(R)Watchdog

###################################
Stream control via Channel Access
###################################
#controlPV (P)(R)StartRecon
#controlPV (P)(R)AbortRecon

##
Lens change synchronization with orthoslices
##
(P)(R)LensChangeSync

 _images/EPICS_NTNDA_Viewer.png
Image J EPICS_NTNDA_Viewer Plugin (on arcturus.xray.aps.anl.gov) - o x
channelName X NY NZ Frames/s Capture to Stack
2bmb:TomoStrearn:Strearr Stop 2880 960 1 0.0 | Snap

Status:

22-Dec-2020 17:09:06,085: updateimage failed

_images/tomoScanStream.png
tomoScanStream.adl —, of =

Tomography Data Collection Zbmb:TomoScanStream:

Setup

Epics PY names _ % | Beamline-specific display @& |

Rotation

Start anglep.000 # of anglesf000 Return to start
fingle stepP.120 Stop angle599,8

Flat Field Control

X in position[0.000 Y in position[0.000
X out position[l0.000 Y out position [.000 | | it
Flat field axis ® - Collect flat fields Mow |

Flat exposure Sane = M # Flat fields [0
Dark Field Control
Dark fieldsf0 Dark valueff Collect dark fields Mow |

File Control
Overwrite warning: fes o Exists: Yes

‘fes -

Buffer Wrapping

Capture[l00 10

File name base_stream_015.h5 # Proj 200
Broadcast binning a4 Done

Data Collection

Exposure time.030 | Stact scan | DIFESEOSESRIN| Status Done

Scan status S
Images collected 46
Images saved 1
Elapsed time 0

Remaining time

Python server Running

_images/tomoStreamRecon.png

_images/tomoStream.png
tomoStream.adl

Stream Reconstruction Zbmb:TomoStream:

Setup
Epics PY names _m

Streaming Control

Ortho X - J 1

Orhto ¥ P | 11
Ortho Z o =
Center 8860% Filter type Buteruarth L
Tomography Reconstruction
__Start Reccn | |GGG RSERIN]
Status

Recon status
Buffer size
Recon time (s)
Python server Running

_images/tomoStreamEPICS_PVs.png
Epics Process Variables

TomoScan prefix [
Image PY¥A prefix
Dark PYA
Flat P¥A

Theta PY¥A
Recon PY¥A

